Обзор: технологии 3D-печати для литья металлов

 

Оглавление

Обзор: технологии 3D-печати для литья металлов

В этой статье мы расскажем про традиционные технологии литья и о том, как они меняются с применением 3D-принтеров. А главное — какие существующие на рынке 3D-принтеры подойдут для внедрения в подобное производство уже сегодня.

Оглавление

О литье

Конечный продукт литейного производства это отливки — будущие детали или заготовки. Их масса может составлять как несколько граммов, так и несколько сотен тонн.

Вот так это делается на станкостроительном заводе.

Можно выделить следующие особенности использования литья в производстве:

  1. возможность получать изделия с массой от нескольких грамм до сотен тонн, со сложной геометрией и разнообразными механическими и эксплуатационными свойствами;
  2. возможность получения изделий, материалы или габариты которых делают невозможным или невыгодным создание их другими методами;
  3. отливки максимально приближены, по размерам и форме, к готовым изделиям, в отличие от заготовок полученных объемной горячей штамповкой или ковкой.

Сравнение с традиционной технологией

В традиционном процессе литья мастер-модель можно изготовить вручную или с помощью механической обработки. Вручную некоторые формы реализовать невозможно. Для изготовления мастер-моделей используют пятиосевые обрабатывающие центры с ЧПУ, что значительно увеличивает возможное разнообразие форм, но и стоимость такой восковки или мастер-модели заметно увеличивается. Такой путь получения отливки актуален для массового производства, в малой и средней серии он, чаще всего, экономически нецелесообразен — тут применение 3D-печати более рационально.

График зависимости стоимости модели от кол-ва произведенных экземпляров показывает эффективность применения аддитивных технологий.

Алгоритм процесса литья с применением аддитивных технологий

Одна из задач, стоящих перед технологами любого литейного производства: минимизация трудоемких операций по механической обработке заготовок. Решается она тем, что отливки должны быть максимально приближены к параметрам необходимой детали, что также экономит средства и время. Здесь на помощь приходят инновации, в лице аддитивных технологий, которые позволяют ускорить техпроцесс, миновав традиционные первые шаги в технологии изготовления отливки. Производитель может за одну операцию получить необходимую литейную модель или форму.

В красной области — традиционный процесс литья, в зеленой и синей — литье с применением аддитивных технологий — сроки изготовления уменьшаются в 2-6 раз.

Прямая печать изделия, которая уже внедрена на многих современных производствах, с экономической точки зрения дороже, чем традиционное литье. Поэтому 3D-печать моделей для выплавления и выжигания, а также синтез уже готовых для литья форм и стержней, вызывает особый интерес.

Литье с применением аддитивных технологий экономически выгоднее, чем прямая печать.

Области применения

Мастер-модели и литьевые формы напечатанные на 3D-принтере используются на ювелирных предприятиях, в производстве стоматологических и ортопедических изделий, в конструкторских бюро, для проведения НИОКР, в учебных центрах и центрах прототипирования.
Геометрически сложные отливки, полученные в результате применения аддитивных технологий, находят применение в кино и на телевидении, когда требуется быстро изготовить необычный реквизит сложной формы.

Модель Aston Martin 1960 DB 5 агента 007, к фильму “Координаты: Скайфолл”, была создана с помощью аддитивных технологий, ради сохранения оригинального автомобиля в трюковых сценах.

Декорации отлитые с использованием песчаных литейных форм напечатанных на 3D-принтере.

3D-принтеры и технологии 3D-печати литейных моделей

Для получения литьевых моделей используют 3D-печать по технологиям FDM (FFF), SLS, SLA, DLP. Эти технологии позволяют напечатать необходимую модель для последующего выплавления или выжигания из образованной вокруг нее литьевой формы. Для выплавляемых моделей используется воск, для выжигаемых — ПММА, CAST-пластик и специальные фотополимеры.

Основной плюс использования такого решения — отсутствие необходимости подготовки специальной оснастки, например — пресс-формы, и низкая зольность материалов при выгорании. Подготовленная 3D-модель сразу отправляется на печать и, после небольшой постобработки, готова к использованию.

FDM (FFF): послойное наплавление

Широко известный профессионалам и любителям аддитивных технологий способ 3D-печати, не требующий дополнительного описания.

Материалом нити для FDM-печати выжигаемых моделей служит специальный пластик, либо композит с высоким содержанием воска.

Принципиальное устройство FDM (FFF) — принтера.

Процесс 3D-печати по FDM-технологии.

PICASO 3D Designer X

PICASO 3D Designer X — FDM-принтер с областью построения 200х200х210 мм, который может печатать такими материалами, как ABS, PLA, HIPS, PVA, ULTRAN 630, ULTRAN 6130, ASA, ABS/PC, PET, PC, FRICTION, CAST, RELAX,ETERNAL, FLEX, RUBBER, SEALANT, PETG, AEROTEX, CERAMO, WAX, SBS, SBS PRO, PROTOTYPERSOFT, PRO-FLEX, TOTAL PRO, NYLON и PEEK со скоростью до 100 см³/ч и с толщиной слоя от 10 мкм.

SLS – Selective Laser Sintering – селективное лазерное спекание

Применяется для изготовления мастер-моделей сложных форм, умеренной точности и относительно больших габаритов.
Как это работает: в рабочей камере, заполненной инертным газом, например азотом, ролик накатывает полистирольный порошок с размером частиц 50-150 мкм на платформу. Новый слой спекается CO2 — лазером (с температурой 100-120 °C) по сечению “тела” CAD-модели. Дальше рабочая платформа опускается на 0.1-0.3 мм, после чего печатается следующий слой.

Принципиальное устройство SLS-принтера.

Печатающаяся модель не требует поддержки, т.к опорной служит сам материал — окружающий порошок. Неизрасходованный материал используется повторно.

Получаемая на таком принтере модель заливается материалом формы, из которой затем выжигается в прокалочной печи. При выжигании выделяются горючие газы, которые необходимо нейтрализовать. Существует опасность засорения формы золой выгоревшей модели, потому материалы для ее изготовления берут с малой зольностью, в сотые доли процента.

Слева — полистирольная 3D-печатная модель, справа — отливка из алюминия

Sentrol SS600G

Sentrol SS600G — SLS 3D-принтер с областью построения 600х400х400 мм, печатающий со скоростью 26 см³/ч, точностью 300 мкм по XY и от 250 по Z.

SLA — Stereolithography Laser Apparatus — лазерная стереолитография

Процесс печати схож с SLS, только вместо порошкового материала — жидкий. УФ-лазер воздействует на материал, который избирательно и послойно отверждается.

В качестве материала используются светочувствительные смолы и фотополимеры. Рабочая платформа опускается или поднимается (зависит от расположения источника света) и жидкость полимеризуется лазером в заданных точках. Неизрасходованный жидкий материал, как и в случае с порошками, может быть повторно использован для печати последующих моделей.

Процесс 3D-печати по технологии SLA.

Полученные модели имеют высокое качество поверхности, что позволяет обойтись без дальнейшей механической обработки.

Пластиковые стереолитографические модели рабочих колес для водомётных движителей (вверху слева), изготовленные по ним восковые модели (внизу слева) и готовая металлическая отливка (справа).

Слева — SLA-модель, справа — отливка из серебра.

Zrapid iSLA1100

230 грамм/час объекты размером до 600х1000х1000 мм.

DLP — Digital Light Processing

Для отверждения фотополимера используется DLP-проектор на чипах DMD. Это и является основным отличием от технологии SLA, где используется УФ-лазер. Еще одно отличие — слой проецируется целиком, все пиксели одновременно, а не рисуется лучом лазера, что ускоряет процесс.

DMD-чип с двумя микрозеркалами.

Модели, напечатанные на таком принтере, требуют удаления поддержек и обработки ультрафиолетом. То есть, постобработка для полученных по такой технологии моделей не отличается от тех, которые печатают по технологии SLA.

Процесс печати по технологии DLP.

Световое “пятно” DLP-проектора, в зависимости от печати конкретного слоя.

DLP-печать позволяет получить модель быстрее, но с менее гладкой поверхностью, чем на SLA-принтере.

SLA (слева) и DLP (справа).

Различие детализации при печати по SLA-технологии и DLP-технологии.

FlashForge Hunter DLP

FlashForge Hunter DLP — DLP-принтер с толщиной слоя в 25-50 мкм и областью печати 120х67,5х150 мм.

Напечатанная модель и готовое изделие, изготовлены с помощью принтера FlashForge Hunter DLP.

Voxeljet

Voxeljet — метод послойного склеивания пластикового порошка или песка, разработанный одноименной немецкой компанией. Его аналог — Binder Jet, работает только с песком.
Подобные 3D-принтеры появились в результате сочетания MJ- и SLS- технологий. Используя в качестве материала ПММА, можно получать выжигаемые модели. ПММА — полиметилметакрилат, если проще — измельченное оргстекло с фракцией 85 μm. Печатающая головка укладывает на рабочую платформу слой порошка толщиной от 100 до 150 микрон. Далее наносится связующее вещество, поверх которого снова укладывается слой порошка. Так процесс повторяется до полного изготовления необходимой модели. В случае с песком, мы получаем литьевую форму.

Как и в случае с SLA-технологией, Voxeljet-модель подойдёт для прецизионного литья.

Отливки по ПММА-моделям, без постобработки.

Voxeljet VX 1000

Voxeljet VX 1000 обеспечивает область печати 1060 х 600 х 500 мм, толщину слоя 100 мкм, точность в 0,3% и скорость до 36 мм/ч по вертикали.

3D-принтеры для изготовления форм

Быстро получить качественную литейную форму можно с помощью технологий Binder Jet и SLS. 3D-принтеры, работающие по данным технологиям, печатают формы из специального литейного песка.

Технология Binder Jet — нанесение связующего вещества

Данная технология позволяет напечатать сложную по геометрии песчаную форму без какой-либо дополнительной обработки. После печати можно сразу приступать к отливке. Основным преимуществом технологии Binder Jet является то, что нет необходимости в каких-то особых условия для работы подобного принтера: печать возможна при комнатной температуре.

Процесс печати по технологии Binder Jet.

Материал, в данном случае — песок, распределяется по рабочей платформе с помощью ролика. Далее, печатающая головка наносит связующий клей поверх порошка. Платформа опускается по толщине слоя модели и объект формируется там, где песок связан с жидкостью (т.е. с клеем). Не использованный материал, по аналогии с SLS-технологией, является поддержкой для будущей модели.

Принципиальное устройство принтера с технологией Binder Jet.

Формы для отливки, напечатанные по технологии Binder Jet.

Sentrol SB1000

3D-принтер Sentrol SB1000 печатает по технологии Binder Jet с толщиной слоя от 100 мкм, точностью по XY от 0,0625 мм и размером модели до 120х67,5х150 мм.

SLS-печать литейных форм

Основное отличие от указанной ранее SLS-технологии — использование в качестве материала для печати литейного песка, предварительно плакированного полимером. Материал спекается лазером, после чего очищается. Полученная форма помещается в прокалочную печь для отверждения, которое происходит при температуре 300-350 °С. Главное отличие от Binder Jet — более высокая детализация готовой литейной формы. Правда, для получения готовой формы требуется больше времени, из-за необходимости дополнительной обработки.

Солнечная 3D-печать

Кстати, есть ещё одна интересная технология печати песком — Solar Sinter. Разработал её немецкий инженер, дизайнер и художник Маркус Кайзер. Солнечная 3D-печать отлично подойдет для создания песчаных литейных форм, хоть и очень невысокой точности.

Если вы собираетесь печатать в пустыне, с собой необходимо взять офис. Маркус Кайзер предлагает пирамидальную палатку со светоотражающим покрытием — отличное укрытие от жаркого солнца.

Если ваше предприятие находится в пустыне, то это оптимальный вариант — кругом песок и солнечный свет, которые доступны в стандартную девятичасовую смену. Необходимо только привезти с собой сам принтер с компьютером. Принтер оборудован линзой Френеля, которая концентрирует солнечный свет в пучок, что дает возможность плавить песок с температурой 1400-1600°C; солнечным трекером, что отслеживает положение солнца и поворачивает линзу к нему; и фотоэлементами, для питания электроприводов установки. Главный плюс — экономия на электроэнергии, материалах и аренде помещения. Но еще важнее, пожалуй, концептуальность.

Процесс печати на солнечном 3D — принтере.

Такой принтер, и в силу специфики применения, и из-за невысокой точности получаемых моделей, вряд ли можно использовать для промышленных нужд. Но для художников и ремесленников он станет настоящей находкой. Печатать на нем литьевые формы, пожалуй, занятие сомнительное, а вот арт-объекты — самое оно.

Извлечение модели из рабочей зоны солнечного 3D-принтера производится с помощью столовой ложки. Можно использовать вилку, но скорость будет ниже.

А если серьезно — кто знает, куда зайдут технологии дальше? Порой безумные проекты открывают новые возможности.

Внедрение 3D-печати делает процесс литья дешевле и быстрее, позволяет изготавливать модели и формы для литья со сложной геометрией и разнообразными габаритами, не теряя в точности получаемой отливки.

Для получения выплавляемых и выжигаемых моделей рекомендуется использовать принтеры, работающие по технологиям FDM(FFF), SLS, SLA/DLP, Voxeljet. Используемые материалы обладают низким процентом зольности, а печатать модели быстрее, чем изготавливать вручную или с помощью станка с ЧПУ.

Пример технологической цепочки для получения отливки с применением выплавляемой модели.

Для получения литейных форм подойдут технологии печати Binder Jet и SLS с подходящим для форм материалом.

Аддитивные технологии в литье применимы в тех случаях, когда необходимо максимально дешево и быстро получить мастер-модель или форму для будущей отливки, например — в конструкторских бюро и на опытных производствах. Применимы они и в серийном производстве — если микронная точность не требуется, разница в скорости и стоимости работ делает их куда привлекательнее механообработки на фрезере с ЧПУ.

Уже сейчас можно заказать отливку из металла или пластмассы и посмотреть на результат применения 3D-печати в литье.

Подобрать 3D-принтер для интеграции в литейное производство или оборудование для литейного цеха можно в Top 3D Shop.

§ 12. ФОРМОВОЧНЫЕ И СТЕРЖНЕВЫЕ СМЕСИ

Основные технологические циклы в литейном производстве

Производство отливок — сложный многостадийный процесс с многократным перемещением большого количества различных материалов, смесей, стержней, форм, модельно-опочной оснастки, отливок, отходов и др.
Можно выделить несколько главных потоков, обеспечивающих реализацию следующих технологических циклов (рис. 1):

  • подготовка формовочных материалов и приготовление смесей;
  • изготовление форм и стержней;
  • подготовка шихтовых материалов, получение жидкого металла и заливка его в формы;
  • выбивание, очистка и окончательная обработка отливок. Сумма последовательных технологических циклов определяет производственный цикл изготовления отливок.

Подготовка формовочных материалов и приготовление смесей

Формовочные и стержневые смеси составляются в большинстве случаев из свежих песчано-глинистых формовочных материалов, регенерата, оборотной смеси и различных добавок. Процесс приготовления смесей включает:

  • разгрузку, складирование и подготовку свежих песчано-глинистых материалов и добавок;
  • подготовку оборотной формовочной смеси;
  • регенерацию отработанных смесей;
  • приготовление смесей.

Схема технологического процесса изготовления отливок в песчаных формах

Рис. 1. Схема технологического процесса изготовления отливок в песчаных формах

Свежие пески и необходимые добавки подготавливаются на складах формовочных материалов, где производятся сушка, охлаждение и просеивание кварцевых песков; резка, сушка и измельчение глины; размалывание каменного угля; измельчение и просеивание высокоогнеупорных материалов (магнезита, циркона и др.); приготовление жидких связующих материалов, глиняных суспензий и др.

Подготовка оборотной смеси заключается в просеивании, магнитной сепарации, охлаждении и гомогенизации, т.е. придании ей однородности по содержанию влаги и температуре.

Регенерация отработанных смесей — это восстановление зернового состава смеси и активация поверхности зерен песка.

Приготовление смесей включает дозирование исходных материалов, их смешивание, выдержку смеси и ее разрыхление. Оборудование, применяемое для этого, можно разделить на следующие группы:

а) оборудование для складирования и подготовки формовочных материалов;

б) оборудование для подготовки оборотных смесей;

в) смесеприготовительное оборудование;

г) транспортное оборудование.

Установка для сушки песка в потоке горячего воздуха изображена на рис. 2. Сырой песок из расходного бункера 10 при помощи дискового 9 и ленточного 8 питателей подается в сушильную трубу 1, температура в которой достигает 500 °C. Разрежением, создаваемым вентилятором 4, сырой песок увлекается вверх со скоростью 15… 17 м/с и, проходя по трубе, в горячем газе быстро высыхает. Установка снабжена батарейным циклоном-осадителем 2 и скруббером 3 для сбора пыли. Из циклона-осадителя высушенный песок поступает в бункер 6, из которого подается на вибрационное сито 5, где просеивается и частично охлаждается. В качестве источника тепла рекомендуется использовать газ, подводимый к горелкам 7.

Влага с поверхности зерен удаляется тем быстрее, чем выше температура и скорость воздуха, омывающего частицы материала.

Установка для сушки песка в потоке воздуха

Рис. 2. Установка для сушки песка в потоке воздуха: 1 — сушильная труба; 2 — батарейный циклон-осадитель; 3 — скруббер для сбора пыли; 4 — вентилятор; 5 — вибрационное сито; 6 — бункер; 7 — горелка; 8 — ленточный питатель; 9 — дисковый питатель; 10 — расходный бункер Рис. 2. Установка для сушки песка в потоке воздуха

Этот метод позволяет реализовать многие преимущества пневматического транспорта: возможность совмещения по времени сушки и транспортирования, а также одновременного обеспыливания песка, компактность установки и др.

bredent-техника литья. Дентальное литье — точность

Если для замешивания массы используется небольшое количество жидкости, то повышением плотности смеси кварца, кристобалита и гипса достигается более высокое тепловое расширение.

лагодаря высокой степени гидрофильности гипса, как связующего вещества, можно получить более однородную формовочную смесь, используя различное количество жидкости. Это позволяет применять ее для формовки поверхностей любого качества без образования трещин.

Кварц и кристобалит — это основные компоненты формовочной смеси с фосфатным связующим. В этом случае гипс, как составная часть связки, заменяется фосфатами. Кварц, кристобалит, кислый фосфат аммония и жженую магнезию смешивают до получения гомогенного состояния.

Изменяя консистенцию используемых компонентов смеси, производитель может изменять качества формовочной массы и, таким образом, удовлетворять разнообразные требования.

Варьируя количество используемой жидкости, при гипсовой связке формовочной смеси можно достичь более точной регулировки расширения, чем при применении фосфатной связки кварца и кристобалита.

Фосфаты обладают очень незначительным смачиванием: малые порции жидкости не позволяют смешать формовочную массу гомогенно, в то же время при увеличении количества связующего не возникает никакого дополнительного контактного соединения.

Из-за этого литейные формы рвутся и образуют шероховатую поверхность отливки. Чтобы соотношение связующего компонента и порошка изменялось незначительно, в качестве жидкости для смешивания используют кремниевый золь.

При комнатной температуре 20 ° C плотность кремниевого золя составляет 1,4 г/см3 , что превышает плотность воды (1,0 г/см3). Высокая плотность кремниевого золя повышает коэффициент расширения смеси, способствуя улучшению кристаллизации и качества формы при затвердевании.

Плотность концентрированного кремниевого золя уменьшается при добавлении к нему дистиллированной воды, и, как следствие, уменьшается расширение смеси. Таким образом, на тепловое расширение можно влиять даже при использовании формовочной массы с фосфатным связующим.

Вам будет интересно  Формомасса Primacast, для литья золота, серебра, латуни и бронзы. (Упаковка 45 кг. )

В качестве связующего вещества и жидкости для смешивания формовочной массы на основе кварца и кристобалита используется смесь этилсиликата и соляной кислоты, как основной связующий материал.

Порошок формовочной смеси состоит только из кварца и кристобалита. Оба компонента равномерно перемешаны. Расширение формовочной массы определяется производителем в зависимости от процентного состава (%, по массе) между частями кварца и кристобалита и зависит исключительно от нагрева.

Изменение термического расширения в зависимости от требований и специфики невозможно, для каждого необходимого расширения нужна другая формовочная масса. Затвердевание жидкой формовочной смеси с образованием литейной полости происходит в процессе нагрева.

Во время преобразования кварца и кристобалита этилсиликат, активированный соляной кислотой, в процессе кристаллизации связывает формовочную массу. Связующие вещества формовочной смеси не рекомендуется постоянно хранить в зуботехнической лаборатории.

Приоритет необходимо отдать состоянию здоровья зубного техника, а не условиям хранения формовочной массы. Пары кислоты, входящей в состав связующего компонента, могут изменить состав воздуха в помещении и превысить гигиенические нормы.

Дробильно-размольное оборудование для подготовки формовочных материалов

В зависимости от степени измельчения материала дробильно-размольные машины разделяют на дробилки и мельницы. По конструкции и принципу действия различают дробилки (щековые, валковые, молотковые) и мельницы (шаровые, молотковые, вибрационные и др.).

Механическое дробление может осуществляться:

  • раздавливанием;
  • изломом, при котором материал разрушается в результате изгиба;
  • истиранием кусков материала какой-либо скользящей поверхностью;
  • раскалыванием;
  • ударом.

Валковые дробилки применяются в литейных цехах для мелкого и среднего дробления карьерной глины, сухих бракованных стержней, отработанных смесей и др. В них материал измельчается между вращающимися навстречу друг другу валками. На рис. 3 показана валковая дробилка, у которой один из валков 3 может перемещаться относительно рамы 1, сжимая пружину 2. Степень измельчения в валковых дробилках регулируется изменением зазора d между двумя валками с помощью сменных прокладок 6, которые имеют разную толщину.

Валковая дробилка

Рис. 13. Валковая дробилка: 1 — рама; 2 — пружина; 3 — валок; 4 — бункер; 5 — измельчаемый материал; 6 — сменные прокладки

Формовочная или стержневая смесь приготавливается в результате нескольких операций: перемешивания компонентов смеси, увлажнения и разрыхления в смесеприготовительных комплексах (рис. 4).

Перемешивание осуществляется в смесителях. Это могут быть бегуны с вертикальными или горизонтальными катками. Песок, глину, воду и другие составляющие загружают при помощи дозаторов. Готовую смесь выдерживают в бункерах-отстойниках в течение 2…5 часов для распределения влаги и образования водных оболочек вокруг глинистых частиц, после чего разрыхляют и подают на формовку.

Смесеприготовительный комплекс

Рис. 4. Смесеприготовительный комплекс: 1 — смеситель; 2 — весовой бункер-дозатор сухих компонентов на 70 кг; 3 — вихревой смеситель; 4 — рама; 5 — шнековый питатель; 6 — весовой бункер- дозатор жидких компонентов на 55 кг; 7 — весовой бункер-дозатор на 1200 кг; 8 — шнековый питатель; 9 — автоматизированное рабочее место лаборанта; 10 — пневмо- и электрооборудование

Приготовление формовочных смесей

Сначала подготавливают песок, глину и другие исходные материалы. Песок сушат и просеивают. Глину сушат, размельчают, размалывают в шаровых мельницах или бегунах и просеивают. Аналогично получают угольный порошок.

Подготавливают оборотную смесь. Оборотную смесь после выбивки из опок разминают на гладких валках, очищают от металлических частиц в магнитном сепараторе и просеивают.

Приготовление формовочной смеси включает несколько операций: перемешивание компонентов смеси, увлажнение и разрыхление.

Перемешивание осуществляется в смесителях-бегунах с вертикальными или горизонтальными катками. Песок, глину, воду и другие составляющие загружают при помощи дозатора, перемешивание осуществляется под действием катков и плужков, подающих смесь под катки.

Готовая смесь выдерживается в бункерах-отстойниках в течение 2…5 часов, для распределения влаги и образования водных оболочек вокруг глинистых частиц.

Готовую смесь разрыхляют в специальных устройствах и подают на формовку.

Стержневые смеси соответствуют условиям технологического процесса изготовления литейных стержней, которые испытывают тепловые и механические воздействия. Они должны иметь боле высокие огнеупорность, газопроницаемость, податливость, легко выбиваться из отливки.

Огнеупорность – способность смеси и формы сопротивляться растяжению или расплавлению под действием температуры расплавленного металла.

Газопроницаемость – способность смеси пропускать через себя газы (песок способствует ее повышению).

В зависимости от способа изготовления стержней смеси разделяют: на смеси с отвердением стержней тепловой сушкой в нагреваемой оснастке; жидкие самотвердеющие; жидкие холоднотвердеющие смеси на синтетических смолах; жидкостекольные смеси, отверждаемые углекислым газом.

Приготовление стержневых смесей осуществляется перемешиванием компонентов в течение 5…12 минут с последующим выстаиванием в бункерах.

В современном литейном производстве изготовление смесей осуществляется на автоматических участках.

Модельный комплект

приспособления, включающие литейную модель, модели литниковой системы, стержневые ящики, модельные плиты, контрольные и сборочные шаблоны.

Литейная модель

приспособление, с помощью которого в литейной форме получают отпечаток, соответствующий конфигурации и размерам отливки.

Применяют модели разъемные и неразъемные, деревянные, металлические и пластмассовые.

Размеры модели больше размеров отливки на величину линейной усадки сплава.

Модели деревянные (сосна, бук, ясень), лучше изготавливать не из целого куска, а склеивать из отдельных брусочков с разным направлением волокон, для предотвращения коробления.

Достоинства: дешевизна, простота изготовления, малый вес. Недостаток: недолговечность.

Для лучшего удаления модели из формы ее окрашивают: чугун – красный, сталь – синий.

Металлические модели характеризуются большей долговечностью, точностью и чистой рабочей поверхностью. Изготавливаются из алюминиевых сплавов – легкие, не окисляются, хорошо обрабатываются. Для уменьшения массы модели делают пустотелыми с ребрами жесткости.

Модели из пластмасс устойчивы к действию влаги при эксплуатации и хранении, не подвергаются короблению, имеют малую массу.

Стержневой ящик

формообразующее изделие, имеющее рабочую полость для получения в ней литейного стержня нужных размеров и очертаний из стержневой смеси. Обеспечивают равномерное уплотнение смеси и быстрое извлечение стержня. Изготавливают из тех же материалов, что и модели. Могут быть разъемными и неразъемными (вытряхными), а иногда с нагревателями.

Изготовление стержней может осуществляться в ручную и на специальных стержневых машинах.

Модельные плитыформируют

разъем литейной формы, на них закрепляют части модели. Используют для изготовления опочных и безопочных полуформ.

Для машинной формовки применяют координатные модельные плиты и плиты со сменными вкладышами (металлическая рамка плюс металлические или деревянные вкладыши).

Изготовление литейных форм

Основными операциями изготовления литейных форм являются: уплотнение формовочной смеси для получения точного отпечатка модели в форме и придание форме достаточной прочности; устройство вентиляционных каналов для вывода газов из полости формы; извлечение модели из формы; отделка и сборка формы.

Формы изготавливаются вручную, на формовочных машинах и на автоматических линиях.

Ручная формовка применяется для получения одной или нескольких отливок в условиях опытного производства, в ремонтном производстве, для крупных отливок массой 200…300 тонн.

Приемы ручной формовки: в парных опоках по разъемной модели; формовка шаблонами; формовка в кессонах.

Формовка шаблонами применяется для получения отливок, имеющих конфигурацию тел вращения в единичном производстве

Шаблон – профильная доска. Изготовление формы для шлаковой чаши (рис. 5.4.а.) показано на рис. 5.4.

Рис.5.4. Шаблонная формовка

В уплотненной формовочной смеси вращением шаблона 1, закрепленного на шпинделе 2 при помощи серьги 3, оформляют наружную поверхность отливки (рис. 5.4.в.) и используют ее как модель для формовки в опоке верхней полуформы 6 (рис. 5.4.г). Снимают серьгу с шаблоном, плоскость разъема покрывают разделительным слоем сухого кварцевого песка, устанавливают модели литниковой системы, опоку, засыпают формовочную смесь и уплотняют ее. Затем снимают верхнюю полуформу. В подпятник 7 устанавливают шпиндель с шаблоном 4, которым оформляют нижнюю полуформу, сжимая слой смеси, равный толщине стенки отливки (рис. 5.4.д). Снимают шаблон, удаляют шпиндель, отделывают болван и устанавливают верхнюю полуформу (рис. 5.4.е). В готовую литейную форму заливают расплавленный металл.

Формовка в кессонах.

Формовкой в кессонах получают крупные отливки массой до 200 тонн.

Кессон – железобетонная яма, расположенная ниже уровня пола цеха, водонепроницаемая для грунтовых вод.

Механизированный кессон имеет две подвижные и две неподвижные стенки из чугунных плит. Дно из полых плит, которые можно продувать (для ускорения охлаждения отливок) и кессона. Кессон имеет механизм для передвижения стенок и приспособлен для установки и закрепления верхней полуформы.

Используется в массовом и серийном производстве, а также для мелких серий и отдельных отливок.

Повышается производительность труда, улучшается качество форм и отливок, снижается брак, облегчаются условия работы.

По характеру уплотнения различают машины: прессовые, встряхивающие и другие.

Уплотнение прессованием может осуществляться по различным схемам, выбор которой зависит от размеров формы моделей, степени и равномерности уплотнения и других условий.

В машинах с верхним уплотнением (рис. 5.5.а) уплотняющее давление действует сверху. Используют наполнительную рамку.

При подаче сжатого воздуха в нижнюю часть цилиндра 1 прессовый поршень 2, стол 3 с прикрепленной к нему модельной плитой 4 с моделью поднимается. Прессовая колодка 7, закрепленная на траверсе 8 входит в наполнительную рамку 6 и уплотняет формовочную смесь в опоке 5. После прессования стол с модельной оснасткой опускают в исходное положение.

У машин с нижним прессованием формовочная смесь уплотняется самой моделью и модельной плитой.

Уплотнение встряхиванием происходит в результате многократно повторяющихся встряхиваний (рис. 5.5.б). Под действием сжатого воздуха, подаваемого в нижнюю часть цилиндра 1, встряхивающий поршень 2 и стол с закрепленной на нем модельной плитой 4 с моделью поднимается на 30…100 мм до выпускного отверстия, затем падает.

Рис. 5.5. Схемы способов уплотнения литейных форм при машинной формовке

а – прессованием; б — встряхиванием

Формовочная смесь в опоке 5 и наполнительной рамке 6 уплотняется в результате появления инерционных сил. Способ характеризуется неравномерностью уплотнения, уплотнение верхних слоев достигается допрессовкой.

Модельная плита имеет вакуумную полость. В модели имеются сквозные отверстия диаметром 0,5…1 мм, совпадающие с отверстиями в плите. Модельную плиту с моделью закрывают нагретой полимерной пленкой. В воздушной коробке насосами создается вакуум 40…50 кПа. Затем устанавливается опока с сухим кварцевым песком, который уплотняется с помощью вибраций.

На верхнюю поверхность помещают разогретую пленку, плотно прилегающую к опоке. Полуформу снимают с модели. При заливке металла пленка сгорает, образуя противопригарное покрытие.

Уплотнение пескометом осуществляется рабочим органом пескомета – метательной головкой. Формовочная смесь подается в головку непрерывно. Пескомет обеспечивает засыпку смеси и ее уплотнение. При вращении ковша (1000…1500 мин–1) формовочная смесь выбрасывается в опоку со скоростью 30…60 м/с. Метательная головка может перемещаться над опокой. Пескомет – высокопроизводительная формовочная машина, его применяют при изготовлении крупных отливок в опоках и кессонах.

Безопочная автоматическая формовка

Используется при изготовлении форм для мелких отливок из чугуна и стали в серийном и массовом производстве.

Изготовление литейных форм осуществляется на высокопроизводительных пескодувно-прессовых автоматических линиях (рис. 5.6).

Рис. 5.6. Изготовление безопочных литейных форм

Формовочная камера заполняется смесью с помощью сжатого воздуха из головки 2. Уплотнение осуществляется при перемещении модельной плиты 1 плунжером 4. После уплотнения поворотная модельная плита 3 отходит влево и поворачивается в горизонтальное положение. Полуформа перемещается плунжером 4 до соприкосновения с предыдущим комом, образуя полость 5. Затем производят заливку металла из ковша 6. После затвердевания и охлаждения отливок, формы подаются на выбивную решетку, где отливки 7 освобождаются от формовочной смеси.

Изготовление стержней осуществляется вручную или на специальных стержневых машинах из стержневых смесей.

Изготовление стержней включает операции: формовка сырого стержня, сушка, окраска сухого стержня. Если стержень состоит из нескольких частей, то после сушки их склеивают.

Ручная формовка осуществляется в стержневых ящиках. В готовых стержнях выполняют вентиляционные каналы. Для придания стержням необходимой прочности используются арматурные каркасы из стальной проволоки или литого чугуна.

Готовые стержни подвергаются сушке при температуре 200…230 0С, для увеличения газопроницаемости и прочности. Во время сушки из стержня удаляется влага, частично или полностью выгорают органические примеси

Часто стержни изготавливают на пескодувных машинах. При использовании смесей с синтетическими смолами, стержни изготавливают в нагреваемой оснастке.

Изготовление стержней из жидкостекольных смесей состоит в химическом отверждении жидкого стекла путем продувки стержня углекислым газом.

Приготовление литейных сплавов связано с плавлением различных материалов. Для получения заданного химического состава и определенных свойств, в сплав в жидком или твердом состоянии вводят специальные легирующие элементы: хром, никель, марганец, титан и др.

Для плавления чугуна и стали, в качестве исходных материалов применяют литейные или передельные доменные чугуны, чугунный и стальной лом, отходы собственного производства, а также для понижения температуры плавления и образования шлаков – флюсы (известняк).

Чугуны, в основном, выплавляют в вагранках. В последнее время развивается плавка в электрических печах, а также дуплекс-процесс, в особенности, вариант вагранка – индукционная печь.

Плавку стали ведут в электродуговых, индукционных и плазменно-индукционных печах.

Для плавления цветных металлов используют как первичные, полученные на металлургических заводах, так и вторичные, после переплавки цветного лома, металлы и сплавы, а также – флюсы (хлористые и фтористые соли).

Для плавления применяют индукционные печи промышленной частоты, электрические печи сопротивления. Плавку тугоплавких металлов и сплавов ведут в вакууме или в среде защитных газов.

Сборка и заливка литейной формы

Сборка литейной формы

включает: установку нижней полуформы; установку стержней, устойчивое положение которых обеспечивается стержневыми знаками; контроль отклонения размеров основных полостей формы; установку верхней полуформы по центрирующим штырям.

форм расплавленным металлом осуществляется из ковшей чайникового, барабанного и других типов. Важное значение имеет температура расплавленного металла. Целесообразно назначать ее на 100…150 0C выше температуры плавления:: низкая температура увеличивает опасность незаполнения формы, захвата воздуха, ухудшения питания отливок; при высокой температуре металл больше насыщен газами, сильнее окисляется, возможен пригар на поверхности отливки.

Заливку ведут непрерывно до полного заполнения литниковой чаши.

Охлаждение, выбивка и очистка отливок

отливок до температуры выбивки длится от нескольких минут (для небольших тонкостенных отливок) до нескольких суток и недель (для крупных толстостенных отливок). Для сокращения продолжительности охлаждения используют методы принудительного охлаждения:

а) обдувают воздухом,

б) при формовке укладывают змеевики, по которым пропускают воздух или воду.

отливки – процесс удаления затвердевшей и охлажденной до определенной температуры отливки из литейной формы, при этом литейная форма разрушается. Осуществляют на специальных выбивных установках. Форма выталкивается из опоки выталкивателем на виброжелоб, по которому направляется на выбивную решетку, где отливки освобождаются от формовочной смеси. Выбивку стержней осуществляют вибрационно-пневматическими и гидравлическими устройствами.

отливок – процесс удаления с отливки прибылей, литников, выпоров и заливов по месту сопряжения полуформ.

Осуществляется пневматическими зубилами, ленточными и дисковыми пилами, при помощи газовой резки и на прессах.

После обрубки отливки зачищают, удаляя мелкие заливы, остатки выпоров и литников. Выполняют зачистку маятниковыми и стационарными шлифовальными кругами, пневматическими зубилами.

отливок – процесс удаления пригара, остатков формовочной и стержневой смесей с наружных и внутренних поверхностей отливок.

Осуществляется в галтовочных барабанах периодического или непрерывного действия (для мелких отливок), в гидропескоструйных и дробеметных камерах, а также химической или электрохимической обработкой.

Специальные способы литья

В современном литейном производстве все более широкое применение получают специальные способы литья: в оболочковые формы, по выплавляемым моделям, кокильное, под давлением, центробежное и другие.

Эти способы позволяют получать отливки повышенной точности, с малой шероховатостью поверхности, минимальными припусками на механическую обработку, а иногда полностью исключают ее, что обеспечивает высокую производительность труда. Каждый специальный способ литья имеет свои особенности, определяющие области применения.

Литье в оболочковые формы

Литье в оболочковые формы

— процесс получения отливок из расплавленного металла в формах, изготовленных по горячей модельной оснастке из специальных песчано-смоляных смесей.

Формовочную смесь приготовляют из мелкого кварцевого песка с добавлением термореактивных связующих материалов.

Технологические операции формовки при литье в оболочковые формы представлены на рис.6.1.

Металлическую модельную плиту 1 с моделью нагревают в печи до 200…250 0C.

Затем плиту 1

закрепляют на опрокидывающемся бункере
2
с формовочной смесью
3
(рис. 6.1. а) и поворачивают на 180 0 (рис. 6.1.б). Формовочную смесь выдерживают на плите 10…30 секунд. Под действием теплоты, исходящей от модельной плиты, термореактивная смола в приграничном слое расплавляется, склеивает песчинки и отвердевает с образованием песчано-смоляной оболочки
4,
толщиной 5…15 мм. Бункер возвращается в исходное положение (рис. 6.1. в), излишки формовочной смеси осыпаются с оболочки. Модельная плита с полутвердой оболочкой
4
снимается с бункера и прокаливается в печи при температуре 300…350 ?C, при этом смола переходит в твердое необратимое состояние. Твердая оболочка снимается с модели с помощью выталкивателей
5
(рис.6.1.г). Аналогичным образом получают вторую полуформу.

Для получения формы полуформы склеивают или соединяют другими способами (при помощи скоб).

Рис 6.1. Технологические операции формовки при литье в оболочковые формы

Собранные формы небольших размеров с горизонтальной плоскостью разъема укладывают на слой песка. Формы с вертикальной плоскостью разъема 6

и крупные формы для предохранения от коробления и преждевременного разрушения устанавливают в контейнеры
7
и засыпают чугунной дробью
8
(рис.6.1.д).

Литье в оболочковые формы обеспечивает высокую геометрическую точность отливок, малую шероховатость поверхностей, снижает расход формовочных материалов (высокая прочность оболочек позволяет изготавливать формы тонкостенными) и объем механической обработки, является высокопроизводительным процессом.

В оболочковых формах изготавливают отливки массой 0,2…100 кг с толщиной стенки 3…15 мм из всех литейных сплавов для приборов, автомобилей, металлорежущих станков.

Литье по выплавляемым моделям

Литье по выплавляемым моделям

– процесс получения отливок из расплавленного металла в формах, рабочая полость которых образуется благодаря удалению (вытеканию) легкоплавкого материала модели при ее предварительном нагревании.

Технологические операции процесса литья по выплавляемым моделям представлены на рис. 6.2.

Выплавляемые модели изготавливают в пресс-формах 1

(рис. 6.2.а) из модельных составов, включающих парафин, воск, стеарин, жирные кислоты. Состав хорошо заполняет полость пресс-формы, дает четкий отпечаток. После затвердевания модельного состава пресс-форма раскрывается и модель
2
(рис. 6.2.б) выталкивается в холодную воду.

Затем модели собираются в модельные блоки 3

(рис. 6.2.в) с общей литниковой системой припаиванием, приклеиванием или механическим креплением. В один блок объединяют 2…100 моделей.

Формы изготавливают многократным погружением модельного блока 3

в специальную жидкую огнеупорную смесь
5,
налитую в емкость
4
(рис.6.2.г) с последующей обсыпкой кварцевым песком. Затем модельные блоки сушат на воздухе или в среде аммиака. Обычно наносят 3…5 слоев огнеупорного покрытия с последующей сушкой каждого слоя.

Модели из форм удаляют, погружая в горячую воду или с помощью нагретого пара. После удаления модельного состава тонкостенные литейные формы устанавливаются в опоке, засыпаются кварцевым песком, а затем прокаливают в печи в течение 6…8 часов при температуре 850…950 0C для удаления остатков модельного состава, испарения воды (рис. 6.2.д)

Рис.6.2. Технологические операции процесса литья по выплавляемым моделям

Заливку форм по выплавляемым моделям производят сразу же после прокалки в нагретом состоянии. Заливка может быть свободной, под действием центробежных сил, в вакууме и т.д.

После затвердевания залитого металла и охлаждения отливок форма разрушается, отливки отделяют от литников механическими методами, направляют на химическую очистку, промывают и подвергают термической обработке.

Литье по выплавляемым моделям обеспечивает получение точных и сложных отливок из различных сплавов массой 0,02…15 кг с толщиной стенки 0,5…5 мм.

Недостатком является сложность и длительность процесса производства отливок, применение специальной дорогостоящей оснастки.

Вам будет интересно  Термопластавтоматы: Разновидности и принцип действия

Литьем по выплавляемым моделям изготавливают детали для приборостроительной, авиационной и другой отраслевой промышленности. Используют при литье жаропрочных труднообрабатываемых сплавов (лопатки турбин), коррозионно-стойких сталей, углеродистых сталей в массовом производстве (автомобильная промышленность).

Технологический процесс автоматизирован и механизирован.

Литье в металлические формы

Литье в металлические формы (кокили) получило большое распространение. Этим способом получают более 40% всех отливок из алюминиевых и магниевых сплавов, отливки из чугуна и стали.

Литье в кокиль

– изготовление отливок из расплавленного металла в металлических формах-кокилях.

Формирование отливки происходит при интенсивном отводе теплоты от расплавленного металла, от затвердевающей и охлаждающейся отливки к массивному металлическому кокилю, что обеспечивает более высокие плотность металла и механические свойства, чем у отливок, полученных в песчаных формах.

Схема получения отливок в кокиле представлена на рис. 6.3.

Рабочую поверхность кокиля с вертикальной плоскостью разъема, состоящую из поддона 1

, двух симметричных полуформ
2
и
3
и металлического стержня
4
, предварительно нагретую до 150…180 ?C покрывают из пульверизатора
5
слоем огнеупорного покрытия (рис. 6.3.а) толщиной 0,3…0,8 мм. Покрытие предохраняет рабочую поверхность кокиля от резкого нагрева и схватывания с отливкой.

Покрытия приготовляют из огнеупорных материалов (тальк, мел, графит), связующего материала (жидкое стекло) и воды.

Рис. 6.3 Технологические операции изготовления отливки в кокиль

Затем с помощью манипулятора устанавливают песчаный стержень 6

, с помощью которого в отливке выполняется полость (рис.6.3.б).

Половинки кокиля соединяют и заливают расплав. После затвердевания отливки 7

(рис. 6.3.в) и охлаждения ее до температуры выбивки кокиль раскрывают (рис.6.3.г) и протягивают вниз металлический стержень
4
. Отливка
7
удаляется манипулятором из кокиля (рис.6.3.д).

Отливки простой конфигурации изготовляют в неразъемных кокилях, несложные отливки с небольшими выступами и впадинами на наружной поверхности – в кокилях с вертикальным разъемом. Крупные, простые по конфигурации отливки получают в кокилях с горизонтальным разъемом. При изготовлении сложных отливок применяют кокили с комбинированным разъемом.

Расплавленный металл в форму подводят сверху, снизу (сифоном), сбоку. Для удаления воздуха и газов по плоскости разъема прорезают вентиляционные каналы.

Все операции технологического процесса литья в кокиль механизированы и автоматизированы. Используют однопозиционные и многопозиционные автоматические кокильные машины.

Литье в кокиль применяют в массовом и серийном производствах для изготовления отливок из чугуна, стали и сплавов цветных металлов с толщиной стенки 3…100 мм, массой от нескольких граммов до нескольких сотен килограммов.

Литье в кокиль позволяет сократить или избежать расхода формовочных и стержневых смесей, трудоемких операций формовки и выбивки форм, повысить точность размеров и снизить шероховатость поверхности, улучшить механические свойства.

Недостатки кокильного литья: высокая трудоемкость изготовления кокилей, их ограниченная стойкость, трудность изготовления сложных по конфигурации отливок.

Изготовление отливок центробежным литьем

При центробежном литье сплав заливается во вращающиеся формы. Формирование отливки осуществляется под действием центробежных сил, что обеспечивает высокую плотность и механические свойства отливок.

Центробежным литьем изготовляют отливки в металлических, песчаных, оболочковых формах и формах для литья по выплавляемым моделям на центробежных машинах с горизонтальной и вертикальной осью вращения.

Металлические формы изложницы изготовляют из чугуна и стали. Толщина изложницы в 1,5…2 раза больше толщины отливки. В процессе литья изложницы снаружи охлаждают водой или воздухом.

На рабочую поверхность изложницы наносят теплозащитные покрытия для увеличения срока их службы. Перед работой изложницы нагревают до 200 0C.

Схемы процессов изготовления отливок центробежным литьем представлены на рис.6.4.

Рис.6.4. Схемы процессов изготовления отливок центробежным литьем

При получении отливок на машинах с вращением формы вокруг вертикальной оси (рис. 6.4.а) металл из ковша 4

заливают во вращающуюся форму
2
, укрепленную на шпинделе
1
, который вращается от электродвигателя.

Под действием центробежных сил металл прижимается к боковой стенке изложницы. Литейная форма вращается до полного затвердевания отливки. После остановки формы отливка 3

Отливки имеют разностенность по высоте – более толстое сечение в нижней части. Применяют для получения отливок небольшой высоты – коротких втулок, колец, фланцев.

При получении отливок типа тел вращения большой длины (трубы, втулки) на машинах с горизонтальной осью вращения (рис. 6.4.б) изложницу 2

устанавливают на опорные ролики
7
и закрывают кожухом
6
. Изложница приводится в движение электродвигателем
1.
Расплавленный металл из ковша
4
заливают через желоб
3
, который в процессе заливки металла перемещается, что обеспечивает получение равностенной отливки
5
. Для образования раструба трубы используют песчаный или оболочковый стержень
8
. После затвердевания металла готовую отливку извлекают специальным приспособлением.

Скорость вращения формы зависит от диаметра отливки и плотности сплава, определяется по формуле:

где: – плотность сплава; – внутренний радиус отливки.

Центробежным литьем изготавливают отливки из чугуна, стали, сплавов титана, алюминия, магния и цинка (трубы, втулки, кольца, подшипники качения, бандажи железнодорожных и трамвайных вагонов).

Масса отливок от нескольких килограммов до 45 тонн. Толщина стенок от нескольких миллиметров до 350 мм. Центробежным литьем можно получить тонкостенные отливки из сплавов с низкой текучестью, что невозможно сделать при других способах литья.

Недостаток: наличие усадочной пористости, ликватов и неметаллических включений на внутренних поверхностях; возможность появления дефектов в виде продольных и поперечных трещин, газовых пузырей.

Преимущества – получение внутренних полостей трубных заготовок без применения стержней, экономия сплава за счет отсутствия литниковой системы, возможность получения двухслойных заготовок, что получается поочередной заливкой в форму различных сплавов (сталь – чугун, чугун – бронза).

Используют автоматические и многопозиционные карусельные машины с управлением от ЭВМ.

Cпециальные способы литья (

Особенности изготовления отливок из различных сплавов

Дефекты отливок и их исправление

Специальные способы литья

Литье под давлением

Литьем под давлением

получают отливки в металлических формах (пресс-формах), при этом заливку металла в форму и формирование отливки осуществляют под давлением.

Отливки получают на машины литья под давлением с холодной или горячей камерой прессования. В машинах с холодной камерой прессования камеры прессования располагаются либо горизонтально, либо вертикально.

На машинах с горизонтальной холодной камерой прессования (рис. 7.1) расплавленный металл заливают в камеру прессования 4

(рис. 7.1.а). Затем металл плунжером
5,
под давлением 40…100 МПа, подается в полость пресс-формы (рис.7.1.б), состоящей из неподвижной
3
и подвижной
1
полуформ. Внутреннюю полость в отливке получают стержнем
2
. После затвердевания отливки пресс-форма раскрывается, стержень
2
извлекается (рис. 7.1.в) и отливка
7
выталкивателями
6
удаляется из рабочей полости пресс-формы.

Рис.7.1. Технологические операции изготовления отливок на машинах с горизонтальной холодной камерой прессования

Перед заливкой пресс-форму нагревают до 120…320 0C. После удаления отливки рабочую поверхность пресс-формы обдувают воздухом и смазывают специальными материалами для предупреждения приваривания отливки. Воздух и газы удаляются через каналы, расположенные в плоскости разъема пресс-формы или вакуумированием рабочей полости перед заливкой металла. Такие машины применяют для изготовления отливок из медных, алюминиевых, магниевых и цинковых сплавов массой до 45 кг.

На машинах с горячей камерой прессования (рис. 7.2) камера прессования 2

расположена в обогреваемом тигле
1
с расплавленным металлом. При верхнем положении плунжера
3
металл через отверстие
4
заполняет камеру прессования. При движении плунжера вниз отверстие перекрывается, сплав под давлением 10…30 МПа заполняет полость пресс-формы
5
. После затвердевания отливки плунжер возвращается в исходное положение, остатки расплавленного металла сливаются в камеру прессования, а отливка удаляется из пресс-формы выталкивателями
6
.

Получают отливки из цинковых и магниевых сплавов массой от нескольких граммов до 25 кг.

Рис.7.2. Схема изготовления отливки на машинах с горячей камерой прессования

При литье под давлением температура заливки сплава выбирается на 10…20 0C выше температуры плавления.

Литье под давлением используют в массовом и крупносерийном производствах отливок с минимальной толщиной стенок 0,8 мм, с высокой точностью размеров и малой шероховатостью поверхности, за счет тщательного полирования рабочей полости пресс-формы, без механической обработки или с минимальными припусками, с высокой производительностью процесса.

Недостатки: высокая стоимость пресс-формы и оборудования, ограниченность габаритных размеров и массы отливок, наличие воздушной пористости в массивных частях отливки.

Изготовление отливок электрошлаковым литьем

Сущность процесса электрошлакового литья заключается в переплаве расходуемого электрода в водоохлаждаемой металлической форме (кристаллизаторе).

При этом операции расплавления металла, его заливка и выдержка отливки в форме совмещены по месту и времени.

Схема изготовления отливок электрошлаковым литьем представлена на рис. 7.3.

Рис.7.3. Схема изготовления отливок электрошлаковым литьем

В качестве расходуемого электрода используется прокат. В кристаллизатор 6

заливают расплавленный шлак
4
(фторид кальция или смесь на его основе), обладающий высоким электро- сопротивлением. При пропускании тока через электрод
7
и затравку
1
выделяется значительное количество теплоты, и шлаковые ванна нагревается до 1700 ?C, происходит оплавление электрода. Капли расплавленного металла проходят через расплавленный шлак и образуют под ним металлическую ванну
3
. Она в водоохлаждаемой форме затвердевает последовательно, образуя плотную без усадочных дефектов отливку
2
. Внутренняя полость образуется металлической вставкой
5
.

Расплавленный шлак способствует удалению кислорода, снижению содержания серы и неметаллических включений, поэтому получают отливки с высокими механическими и эксплуатационными свойствами.

Изготавливаются отливки ответственного назначения массой до 300 тонн: корпуса клапанов и задвижек атомных и тепловых электростанций, коленчатые валы судовых двигателей, корпуса сосудов сверхвысокого давления, ротора турбогенераторов.

Изготовление отливок непрерывным литьем

При непрерывном литье

(рис. 7.4) расплавленный металл из металлоприемника
1
через графитовую насадку
2
поступает в водоохлаждаемый кристаллизатор
3
и затвердевает в виде отливки
4
, которая вытягивается специальным устройством
5
. Длинные отливки разрезают на заготовки требуемой длины.

Используют при получении отливок с параллельными образующими из чугуна, медных, алюминиевых сплавов. Отливки не имеют неметаллических включений, усадочных раковин и пористости, благодаря созданию направленного затвердевания отливок.

Рис. 7.4. Схема непрерывного литья (а) и разновидности получаемых отливок (б)

Особенности изготовления отливок из различных сплавов

Преобладающее количество отливок из серого чугуна изготовляют в песчаных формах. Отливки получают ,как правило, получают без применения прибылей.

При изготовлении отливок из серого чугуна в кокилях, в связи с повышенной скоростью охлаждения при затвердевании, начинает выделяться цементит – появление отбеливания. Для предупреждения отбела на рабочую поверхность кокиля наносят малотеплопроводные покрытия. Кокили перед работой их нагревают, а чугун подвергают модифицированию. Для устранения отбела отливки подвергают отжигу.

Отливки типа тел вращения (трубы, гильзы, втулки) получают центробежным литьем.

Отливки из высокопрочного чугуна преимущественно изготовляют в песчаных формах, в оболочковых формах, литьем в кокиль, центробежным литьем. Достаточно высокая усадка чугуна вызывает необходимость создания условий направленного затвердевания отливок для предупреждения образования усадочных дефектов в массивных частях отливки путем установки прибылей и использования холодильников.

Расплавленный чугун в полость формы подводят через сужающуюся литниковую систему и, как правило, через прибыль.

Особенностью получения отливок из ковкого чугуна является то, что исходный материал – белый чугун имеет пониженную жидкотекучесть, что требует повышенной температуры заливки при изготовлении тонкостенных отливок. Для сокращения продолжительности отжига чугун модифицируют алюминием, бором, висмутом. Отливки изготавливают в песчаных формах, а также в оболочковых формах и кокилях.

Стальные отливки

Углеродистые и легированные стали – 15Л, 12Х18Н9ТЛ, 30ХГСЛ, 10Х13Л, 110Г13Л – литейные стали.

Литейные стали имеют пониженную жидкотекучесть, высокую усадку до 2,5%, склонны к образованию трещин.

Стальные отливки изготовляют в песчаных и оболочковых формах, литьем по выплавляемым моделям, центробежным литьем.

Для предупреждения усадочных раковин и пористости в отливках на массивные части устанавливают прибыли, а в тепловых узлах – используют наружные или внутренние холодильники. Для предупреждения трещин формы изготавливают из податливых формовочных смесей, в отливках предусматривают технологические ребра.

Подачу расплавленного металла для мелких и средних отливок выполняют по разъему или сверху, а для массивных – сифоном. В связи с низкой жидкотекучестью площадь сечения питателей в 1,5…2 раза больше, чем при литье чугуна.

Для получения высоких механических свойств, стальные отливки подвергают отжигу, нормализации и другим видам термической обработки.

Алюминиевые сплавы

Основные литейные сплавы – сплавы системы алюминий – кремний (силумины)

Силумины (АЛ2, АЛ4,

Дата добавления: 2016-09-26; просмотров: 4475; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Похожие статьи:

Оборудование машинной формовки

В практике литейного производства применяют три основных способа машинной формовки: в парных опоках, в стопках и безопочный.

Первым способом форму изготавливают из двух половин — полуформ. Каждую полуформу (верхнюю и нижнюю) подготавливают в своей опоке, чаще всего на отдельной машине (автомате). После установки стержней полуформы соединяют попарно (устанавливают верхнюю на нижнюю) и перед заливкой скрепляют между собой.

При стопочной формовке часто в одной опоке совмещают верхнюю и нижнюю полуформы. Устанавливая опоки одну на другую в стопку, получают блок форм, которые заливают через один общий литниковый стояк. Изготавливают стопку форм на одной машине-автомате.

При безопочной формовке опок не требуется. Изготовливают- ся безопочные формы чаще всего на одной машине-автомате.

Изготовление форм и стержней. Условия и методы уплотнения формовочной смеси

Целью уплотнения формовочной смеси является достижение такой ее плотности и прочности, при которой литейная форма не изменяет свои размеры под влиянием статического, динамического и химико-термического воздействия заливаемого в нее металла и обеспечивает получение точной отливки с гладкой поверхностью.

Существует много методов уплотнения смеси в опоках:

  • ручная набивка опок при помощи трамбовок;
  • встряхивание с последующим уплотнением верхних слоев формы;
  • встряхивание с одновременным прессованием (рис. 5);
  • прессование;
  • прессование с одновременной вибрацией;
  • надув;
  • надув с последующим прессованием;
  • пескометная набивка.

Существует также ряд специальных методов уплотнения форм.

В соответствии с методами уплотнения формовочные машины можно разделить на следующие группы:

  • встряхивающие;
  • встряхивающе-прессовые;
  • прессовые;
  • вибропрессовые;
  • пескодувно-прессовые;
  • пескодувные (пескострельные);
  • пескометы;
  • импульсные.

Вибропрессовая формовочная машина модели 226

Рис. 5. Вибропрессовая формовочная машина модели 226: 1 — штифтоподъемный механизм; 2 — прессовый поршень; 3 — плунжер вибратора; 4 — стол; 5 — станина-колонка; 6 — прессовая траверса; 7 — коленный клапан

По методу извлечения модели из формы различают машины со штифтовым подъемом, с протяжной рамкой, с поворотом полу- формы на 180°.

По конструктивной компоновке и методу агрегатирования формовочные машины разделяются на однопозиционные, двухпозиционные челночные, многопозиционные проходного типа, многопозиционные карусельного типа; по степени автоматизации — на неавтоматические и полуавтоматические; по виду привода — на пневматические, гидравлические, пневмогидравлические, электромагнитные и механические.

Вибропрессовая машина с поршневым прессующим механизмом модели 226. Большинство прессовых формовочных машин, работающих с низким удельным давлением прессования 0,2…0,4 МПа, используются в мелкосерийном производстве. Они снабжаются вибраторами и представляют литой прессовый цилиндр (см. рис. 5), в котором перемещается прессовый поршень 2, несущий на себе стол 4 машины.

Прессовый механизм крепится к станине-колонке 5, на которой установлена прессовая траверса 6. Штифтоподъемный механизм 7 выполнен в блоке с прессовым цилиндром. Пуск воздуха в прессовый цилиндр во многих машинах производится автоматически при установке траверсы и подготовленного комплекта (модель, опока, смесь) в рабочее положение. С этой целью некоторые машины снабжаются автоматическим клапаном давления, который выключает машину по достижении заданного давления прессования.

В вибропрессовых машинах цилиндр вибратора обычно составляет одно целое с прессовым поршнем и размещается в средней его части. В цилиндр запрессована чугунная втулка, которая служит направляющей для плунжера вибратора 3 и обеспечивает воздухораспределение в ходе его работы.

Домик из спичек

История литейного дела насчитывает более пяти тысячелетий. В каменных, глиняных и песчаных формах древние мастера отливали орудия труда, хозяйственную утварь и украшения. Сегодня мы расскажем об этом древнем ремесле. Оно поможет вам в изготовлении различных декоративных изделий, а также деталей для ваших моделей. Для примера проследим, как отливают небольшую шкатулку.

Форму для ее отливки готовят в двух ящиках-опоках, сделанных из хорошо просушенной древесины березы, сосны, бука. Деревянные опоки — это рамы, собранные на шурупах и клее (см. рис. 1 А, В). С двух противоположных сторон каждой рамы укрепляют горизонтальные планки, которые называются выступами, или приливами (рис. 1 Г). В приливах сверлят два отверстия и забивают в них металлические трубки (рис. 1 Д). Чтобы трубки не выпадали, их торцы слегка проковывают. Из толстой проволоки сгибают штыри или соединяют верхнюю и нижнюю опоки (рис. 1 Б, Е). В работе вам потребуются совок, сито, трамбовка, иглы, подъемы, ланцеты, мешочки с так называемым припылом, гладилки, кисти (рис. 2 А-И). Совком засыпают в опоки формовочную смесь, а через сито ее просеивают. Величина ячеек сита — от 1 до 1,5 мм. Для уплотнения формовочной смеси наиболее удобна трамбовка с двумя рабочими частями — цилиндрической и клиновидной (рис. 2В). Иглы (рис. 2Г) служат для прокалывания в песчаной форме каналов, в которые входят газы, образующиеся при заливке металла. Иглы изготавливают из стальных прутков, заточенных на конус. Мешочком с порошком-припылом (рис. 2Ж) припудривают поверхность модели перед формовкой, а также готовую форму перед сборкой и отливкой. Благодаря этому к ней не прилипает формовочная смесь. Кроме того, припудренную модель легко извлекать из готовой формы.

В качестве припыла применяют измельченный древесный уголь, цемент, тальк, графит, а для тонкого фасонного литья — ликоподий (споры болотного растения плауна). Мешочек для порошка делают из марли или другой редкой ткани. Очищают модель от лишнего припыла кистью из перьев (рис. 2И). Подъемы (рис. 2Д) — тонкие стержни, один конец которых согнут в виде кольца, а другой заострен — служат для извлечения модели из формы. На рабочей части крупного подъема нарезают резьбу. Всевозможные повреждения на форме устраняют гладилками, изготовленными из стали или латуни (рис. 2З). Рабочие поверхности гладилок тщательно полируют. Для подрезания формовочной смеси, например при изготовлении литниковой воронки, применяют стальные и латунные ланцеты (рис. 2Е).

Основой для литейной формы служит модель, выполненная в натуральную величину из гипса, дерева, металла, пластмассы и других материалов. Деревянные модели изготавливают из сосны, бука, ольхи, березы. Древесина должна быть хорошо просушена.

Шкатулка, эскизы которой приведены на рисунке, состоит из двух частей — корпуса и крышки.

Чтобы крышку и корпус можно было легко извлечь из формы, их боковые стенки делают с некоторым уклоном. Соединительные петли составляют со стенками единое целое. Шкатулку отливают по частям — для крышки и корпуса делают отдельные формы. Боковые стороны крышки соединяют сена ус» тонкими гвоздями и клеем. На верхнюю сторону крышки переводят через копировальную бумагу нарисованный по клеточкам контур рельефа, который затем вырезают ножом-косяком, полукруглыми и прямыми стамесками. Законченный рельеф шлифуют мелкозернистой шкуркой. Верхнюю и боковые стенки соединяют друг с другом штырями. Так как модель крышки — разъемная, обе ее части должны легко разъединяться без значительных усилий. Разъемную модель крышки окрашивают нитролаком, эмалью или масляной краской. В литейном деле принято в красный цвет окрашивать модели для чугунных отливок, в серый — для стальных, а в желтый — для цветных металлов. Потому оговоримся: несмотря на то, что на нашем рисунке модель шкатулки окрашена в красный цвет, отливать ее можно из любых доступных легкоплавких металлов. Одновременно с крышкой в той же последовательности изготавливают разъемную модель корпуса коробки.

Она состоит из кварцевого песка, в который добавлено 8—12% чуть влажной глины. Песок предварительно промывают, просушивают, а затем просеивают через сито. Глину отмучивают, то есть заливают большим количеством воды и размешивают деревянной мутовкой до образования однородной глинистой жижи. Когда раствор отстоится, песчинки и мелкие камешки опустятся на дно, а щепки, травинки и другие легкие предметы всплывут. Осветленную воду осторожно сливают и ковшом вычерпывают жидкую глину, которую потом помещают в широкую посудину. Сушат глину в теплом сухом месте или на солнце. Потом ее измельчают в порошок, просеивают и высыпают в ящик, коробку или целлофановый пакет.

Вам будет интересно  ГОСТ 18111-93

Чтобы приготовить формовочную смесь 9 частей песка смешивают с 1 частью глиняного порошка, тщательно перемешивают и добавляют примерно 0,5 части воды. Раствор перемешивают до тех пор, пока он не станет однородным. Оптимальную влажность формовочной смеси можно определить так. Берут щепотку смеси, скатывают из нее шарик, а потом подбрасывают вверх. Материал считается пригодным к работе, если шарик не рассыплется или не расплющится при падении. Рассыпавшийся шарик указывает на то, что формовочная смесь недостаточно увлажнена, а расплющенный — на избыток влаги. В первом случае в смесь добавляют чуть-чуть воды, а во втором — сухую песчано-глинистую смесь.

На ровный и гладкий деревянный щит, называемый подмодельной доской, кладут одну из двух частей разъемной модели. В данном случае это будет верхняя сторона крышки. Ее укладывают рельефом вверх. Рядом располагают прямоугольный деревянный брусок — так называемый питатель (рис. 1). Следом за ними устанавливают опоку приливами вниз и при-пыливают поверхности детали и питателя, например, порошком древесного угля (рис. 2). Затем наносят слой облицовочной формовочной смеси, то есть более тщательно просеянной, мелкой и однородной. От нее зависит чистота поверхностей отливки (рис. 3). Постепенно слой за слоем всыпают в опоку наполнительную смесь, постоянно утрамбовывая ее, вначале клиновидным концом трамбовки, а затем плоским (рис. 4). Утрамбовывать надо с таким расчетом, чтобы она была не рыхлой, но и не слишком плотной. В первом случае в формовочной смеси могут образоваться пустоты, которые потом заполнятся металлом и исказят форму отливки; во втором — чрезмерное уплотнение помешает выходу газов при заливке металла.

Заполнив опоку доверху, деревянной или металлической линейкой снимают лишнюю формовочную смесь (рис. 5).

В готовой полуформе на равном расстоянии друг от друга иглами делают вентиляционные каналы. Форму прокалывают с таким расчетом, чтобы вентиляционные каналы не касались модели (рис. 6). В противном случае металл попадает в каналы, нарушая чистоту поверхности отливки.

Далее опоку переворачивают так, чтобы приливы с ушками оказывались сверху (рис. 7). Плоские участки формовочной смеси (поверхности разъема) посыпают сухим песком. Он разделяет две полуформы, не давая формовочной массе слипаться. Песок, попавший на модель, сметают кисточкой из перьев. Сверху устанавливают вторую часть модели, так, чтобы штыри, находящиеся на ней, свободно вошли в глухие отверстия, заранее просверленные в первой детали (рис. 8). На конце питателя устанавливают шлакоуловитель со стояком, а в самой высокой точке модели — так называемый выпор. Стояк — это деревянный усеченный конус, опирающийся на шлакоуловитель — призму с трапецеидальным сечением. Установив сверху вторую опоку и соединив ее с нижней штырями, покрывают модель и литниковую систему тонким слоем припыла и заполняют верхнюю опоку формовочной смесью (рис. 9). Лишнюю формовочную смесь удаляют линейкой (рис. 10). В верхней части формы накалывают вентиляционные отверстия и вырезают литниковую воронку (рис. 11). Вынув из гнезд соединительные штыри, убирают из формы и стояк. Затем осторожно снимают верхнюю полуформу и кладут рядом с нижней. С помощью подъемов извлекают из полуформ модель и литниковую систему (рис. 12).

Раскрытую форму тщательно осматривают, исправляя поврежденные места гладилками и ланцетами. Убедившись, что дефектов нет, внутренние поверхности формы припудривают толченым древесным углем. Затем полуформы накладывают одну на другую, соединяют штырями и устанавливают на постель, состоящую из слоя формовочной смеси (рис. 13). Сверху кладут планки и груз.

Металл или его сплавы, заливаемые в песчаную форму, должны иметь хорошие литейные свойства и прежде всего высокую текучесть. Чтобы это свойство полнее проявлялось, заливаемый расплав должен иметь температуру на 100—150 градусов выше точки его плавления. Свинец плавится при температуре 327 градсов, но температура заливаемого в форму расплава должна быть примерно 500 градусов. Температура плавления олова 232 градусов, оловянный расплав должен иметь температуру 400 градусов. Точка плавления цинка 419 градусов, а температура расплава — 600 градусов. Температура плавления алюминия 660 градусов, а расплав должен иметь температуру 750—800 градусов.

Цинк — один из самых доступных легкоплавких металлов, который обладает высокими литейными свойствами. Запастись цинком можно постепенно. Прежде чем выбросить батарейки для карманного фонаря или радиоприемника, надо извлечь из них и переплавить цинковые стаканчики. Так постепенно у вас соберется нужное количество.

Цинк, олово, свинец легко плавятся в обычной консервной банке на любом огне. Свинец плавят на открытом воздухе или в помещении, оборудованном вытяжным шкафом. Алюминий плавят в глиняных тиглях, помещая их в муфельную печь. В ней можно плавить и бронзу, содержащую 25% олова. Перед загрузкой металла в тигли их стенки и дно припорашивают бурой. О том, как сделать своими руками простейшие муфельные печи, мы уже рассказывали.

Расплав вливают в форму через воронку литника (рис. 13). Заполнив доверху воронку и выпор, металлу дают затвердеть и остыть в течение 20—30 минут. Затем опоки разъединяют и выбивают отливку. Формовочную массу убирают в отдельный ящик для повторного использования при формовке корпуса шкатулки (рис. 14).

У выбитой из формы отливки отпиливают или обрубают зубилом литниковые образования и напильниками стачивают наплывы. Металлической щеткой снимают с отливки пригоревшую формовочную смесь. По сравнению с моделью отливка всегда получается менее четкой, поэтому ее обрабатывают специальными чеканами. Мелким отливкам придают четкость с помощью зубильцев и резцов (рис. 15). В той же последовательности отливают, а затем отделывают нижнюю часть шкатулки — корпус. Готовую шкатулку покрывают защитным декоративным слоем.

Мы рассказали об изготовлении шкатулки, но эта технология годится и для отливки деталей модели, например, якоря, показанного на рисунке.

Обзор: технологии 3D-печати для литья металлов

В этой статье мы рассказываем про традиционные технологии литья и о том, как они меняются с применением 3D-принтеров. А главное — какие существующие на рынке 3D-принтеры подойдут для внедрения в литьевое производство уже сегодня.

Оглавление

О литье

Конечный продукт литейного производства это отливки — будущие детали или заготовки. Их масса может составлять как несколько граммов, так и несколько сотен тонн.

Вот так это делается на станкостроительном заводе.

Можно выделить следующие особенности использования литья в производстве:

1) возможность получать изделия с массой от нескольких грамм до сотен тонн, со сложной геометрией и разнообразными механическими и эксплуатационными свойствами;

2) возможность получения изделий, материалы или габариты которых делают невозможным или невыгодным создание их другими методами;

3) отливки максимально приближены, по размерам и форме, к готовым изделиям, в отличие от заготовок полученных объемной горячей штамповкой или ковкой.

Сравнение с традиционной технологией

В традиционном процессе литья мастер-модель можно изготовить вручную или с помощью механической обработки. Вручную некоторые формы реализовать невозможно. Для изготовления мастер-моделей используют пятиосевые обрабатывающие центры с ЧПУ, что значительно увеличивает возможное разнообразие форм, но и стоимость такой восковки или мастер-модели заметно увеличивается. Такой путь получения отливки актуален для массового производства, в малой и средней серии он, чаще всего, экономически нецелесообразен — тут применение 3D-печати более рационально.

График зависимости стоимости модели от кол-ва произведенных экземпляров показывает эффективность применения аддитивных технологий

Алгоритм процесса литья с применением аддитивных технологий

Одна из задач, стоящих перед технологами любого литейного производства: минимизация трудоемких операций по механической обработке заготовок. Решается она тем, что отливки должны быть максимально приближены к параметрам необходимой детали, что также экономит средства и время. Здесь на помощь приходят инновации, в лице аддитивных технологий, которые позволяют ускорить техпроцесс, миновав традиционные первые шаги в технологии изготовления отливки. Производитель может за одну операцию получить необходимую литейную модель или форму.

В красной области — традиционный процесс литья, в зеленой и синей — литье с применением аддитивных технологий — сроки изготовления уменьшаются в 2-6 раз.

Прямая печать изделия, которая уже внедрена на многих современных производствах, с экономической точки зрения дороже, чем традиционное литье. Поэтому 3D-печать моделей для выплавления и выжигания, а также синтез уже готовых для литья форм и стержней, вызывает особый интерес.

Литье с применением аддитивных технологий экономически выгоднее, чем прямая печать.

Области применения

Мастер-модели и литьевые формы напечатанные на 3D-принтере используются на ювелирных предприятиях, в производстве стоматологических и ортопедических изделий, в конструкторских бюро, для проведения НИОКР, в учебных центрах и центрах прототипирования.
Геометрически сложные отливки, полученные в результате применения аддитивных технологий, находят применение в кино и на телевидении, когда требуется быстро изготовить необычный реквизит сложной формы.

Aston Martin 1960 DB 5 агента 007 к фильму “Координаты: Скайфолл” была создана с помощью аддитивных технологий, ради сохранения оригинального автомобиля в трюковых сценах.

Отливка декораций с использованием песчаных литейных форм напечатанных на 3D-принтере.

3D-принтеры и технологии 3D-печати литейных моделей

Для получения литьевых моделей используют 3D-печать по технологиям FDM (FFF), SLS, SLA, DLP. Эти технологии позволяют напечатать необходимую модель для последующего выплавления или выжигания из образованной вокруг нее литьевой формы. Для выплавляемых моделей используется воск, для выжигаемых — ПММА, CAST-пластик и специальные фотополимеры.
Основной плюс использования такого решения — отсутствие необходимости подготовки специальной оснастки, например — пресс-формы, и низкая зольность материалов при выгорании. Подготовленная 3D-модель сразу отправляется на печать и, после небольшой постобработки, готова к использованию.

FDM (FFF): послойное наплавление

Широко известный профессионалам и любителям аддитивных технологий способ 3D-печати, не требующий дополнительного описания.

Материалом нити для FDM-печати выжигаемых моделей служит специальный пластик, либо композит с высоким содержанием воска.

Принципиальное устройство FDM (FFF) — принтера.

Процесс 3D-печати по FDM — технологии

PICASO 3D Designer X

PICASO 3D Designer X — FDM-принтер с областью построения 200х200х210 мм, который может печатать такими материалами, как ABS, PLA, HIPS, PVA, ULTRAN 630, ULTRAN 6130, ASA, ABS/PC, PET, PC, FRICTION, CAST, RELAX,ETERNAL, FLEX, RUBBER, SEALANT, PETG, AEROTEX, CERAMO, WAX, SBS, SBS PRO, PROTOTYPERSOFT, PRO-FLEX, TOTAL PRO, NYLON и PEEK со скоростью до 100 см³/ч и с толщиной слоя от 10 мкм.

Материалы

Пластик Filamentarno WAX3D Base – восковой филамент для печати моделей для литья из металлов. Подходит для любых FDM-принтеров. При выгорании Filamentarno WAX3D Base остается минимальная зольность – менее 0,01%. Пластик хорошо подвергается постобработке полировкой, при помощи растворителя или пламенем. Восковые модели не отличаются по свойствам от стандартных и могут использоваться в литейном производстве.

CAST пластик 1,75 REC прозрачный – полиметилметакрилат для литейного производства. Обладает высокой степенью прозрачности и низкой зольностью. Напечатанную этим материалом модель пропитывают восковым раствором для создания гладкой поверхности. Затем в литейном цеху для модели создают систему каналов для равномерной подачи расплава. Затем конструкцию погружают в смесь для формовки, которую наносят в несколько слоев. Так из напечатанной модели и литниковой системы получается неразъемная форма. Печатную модель выжигают из формы. Затем форму прокаливают в печи, после чего ее можно использовать для литья.

SLS – Selective Laser Sintering – селективное лазерное спекание

Применяется для изготовления мастер-моделей сложных форм, умеренной точности и относительно больших габаритов.
Как это работает: в рабочей камере, заполненной инертным газом, например азотом, ролик накатывает полистирольный порошок с размером частиц 50-150 мкм на платформу. Новый слой спекается CO2 — лазером (с температурой 100-120 °C) по сечению “тела” CAD-модели. Дальше рабочая платформа опускается на 0.1-0.3 мм, после чего печатается следующий слой.

Принципиальное устройство SLS — принтера.

Печатающаяся модель не требует поддержки, т.к опорной служит сам материал (окружающий порошок). Неизрасходованный материал используется повторно.

Процесс 3D-печати по SLS — технологии

Получаемая на таком принтере модель заливается материалом формы, из которой затем выжигается в прокалочной печи. При выжигании выделяются горючие газы, которые необходимо нейтрализовать. Существует опасность засорения формы золой выгоревшей модели, потому материалы для ее изготовления берут с малой зольностью, в сотые доли процента.

Керамическая форма для высокоточного литья и полученная отливка

Onsint SM300

Onsint SM300 — SLS 3D-принтер с областью построения 330х330х450 мм, печатающий со скоростью 25 мм/ч, с толщиной слоя от 60 мкм.

Материалы

PrimeCast 101 – Polystyrene Gray — серый материал на основе полистирола. Подходит для печати моделей для литья из металла, благодаря низкой температуре плавления и точности размеров напечатанных деталей.

SLA — Stereolithography Laser Apparatus — лазерная стереолитография

Процесс печати схож с SLS, только вместо порошкового материала — жидкий. УФ-лазер воздействует на материал, который избирательно и послойно отверждается.

В качестве материала используются светочувствительные смолы и фотополимеры. Рабочая платформа опускается или поднимается (зависит от расположения источника света) и жидкость полимеризуется лазером в заданных точках. Неизрасходованный жидкий материал, как и в случае с порошками, может быть повторно использован для печати последующих моделей.

Процесс 3D-печати по технологии SLA .

Полученные модели имеют высокое качество поверхности, что позволяет обойтись без дальнейшей механической обработки.

Пластиковые стереолитографические модели рабочих колес для водомётных движителей (вверху слева), изготовленные по ним восковые модели (внизу слева) и готовая металлическая отливка (справа).

Слева — SLA- модель, справа — отливка из серебра .

UnionTech RSPro450

3D-принтер UnionTech RSPro450 печатает детали с толщиной слоя от 30 мкм размером 450 x 450 x 300 мм.

Shining3D EP-A450

Фотополимерный принтер Shining3D EP-A450 печататет со скоростью до 120 г/ч объекты размером до 450×450×350 мм.

XJRP SPS 450H

3D-принтер XJRP SPS 450H имеет размер рабочей камеры 450 х 450 х 350 мм и печатает со скоростью 200 г/ч.

Материалы

Смола для стереолитографии Somos Element разработана компанией DSM Additive Manufacturing специально для изготовления моделей для литья. Материал Somos Element не содержит сурьмы. Печать этим материалом позволяет добиться качественных 3D-моделей с высокой степенью повторяемости. Материал обладает высокой прочностью, не деформируется во время хранения и имеет низкую зольность. Остатки материала легко удаляются, оставляя форму чистой.

LCD — Liquid Crystal Display и DLP — Digital Light Processing

Для отверждения фотополимера используется DLP-проектор на чипах DMD или ЖК-экран. Это и является основным отличием от технологии SLA, где используется УФ-лазер. Еще одно отличие — слой проецируется целиком, каждый пиксель одновременно, а не рисуется лучом лазера, что ускоряет процесс.

DMD-чип с двумя микрозеркалами .

Модели, напечатанные на таком принтере, требуют удаления поддержек и обработки ультрафиолетом. То есть, постобработка для полученных по такой технологии моделей не отличается от тех, которые печатают по технологии SLA.

Процесс печати по технологии DLP

Световое “пятно” DLP-проектора, в зависимости от печати конкретного слоя.

DLP-печать позволяет получить модель быстрее, но с менее гладкой поверхностью, чем на SLA-принтере.

SLA (слева) и DLP (справа).

Различие детализации при печати по SLA-технологии и DLP-технологии .

FlashForge Hunter DLP

FlashForge Hunter DLP — DLP-принтер с толщиной слоя в 25-50 мкм и областью печати 120х67,5х150 мм.

Напечатанная модель и готовая отливка, изготовлены с помощью принтера FlashForge Hunter DLP

Photocentric Liquid Crystal Magna

3D-принтер Photocentric Liquid Crystal Magna — один из крупнейших LCD-принтеров. Имеет вместительную рабочую камеру — 510 x 280 x 350 мм и печатает детали с толщиной слоя от 25 мкм.

Материалы

Фотополимер Daylight Precision Castable предназначен для изготовления литейных форм для ювелирных изделий. Демонстрирует высокую точность и детализацию. Поверхность изделий четкая и гладкая. После выжигания материал не оставляет золы, в процессе полимеризации не деформируется.

Деталь напечата фотополимером Daylight Precision Castable черного цвета

3D-принтеры для изготовления форм

Быстро получить качественную литейную форму можно с помощью технологий Binder Jetting и SLS. 3D-принтеры, работающие по данным технологиям, печатают формы из специального литейного песка.

Технология BinderJetting — нанесение связующего вещества

Данная технология позволяет напечатать сложную по геометрии песчаную форму без какой-либо дополнительной обработки. После печати можно сразу приступать к отливке. Основным преимуществом технологии BinderJetting является то, что нет необходимости в каких-то особых условия для работы подобного принтера: печать возможна при комнатной температуре.

Процесс печати по технологии Binder Jet.

Материал, в данном случае — песок, распределяется по рабочей платформе с помощью ролика. Далее, печатающая головка наносит связующий клей поверх порошка. Платформа опускается по толщине слоя модели и объект формируется там, где песок связан с жидкостью (т.е. с клеем). Не использованный материал, по аналогии с SLS-технологией, является поддержкой для будущей модели.

Принципиальное устройство принтера с технологией Binder Jet.

Формы для отливки, напечатанные по технологии Binder Jet.

FHZL PCM1500

Песчаный 3D-принтер FHZL PCM1500 печатает модели с точностью ±0.3 мм, с толщиной слоя от 200 мкм. Вмещает детали до 1500x1000x700 мм.

FHZL PCM2200

Песчаный 3D-принтер FHZL PCM2200 с еще более вместительной рабочей камерой — 2200x1000x800 мм. Печатает кварцевым, кальцинированный, синтетический и хромитовый песком детали с толщиной слоя от 200 мкм.

ExOne S-Max Pro

Промышленный 3D-принтер ExOne S-Max Pro печатает прототипы и формы из песка с толщиной слоя от 260 мкм. Габариты печатаемых моделей не должны превышать размеры рабочей камеры — 10400х3520х2860 мм.

ExOne S-Print

Промышленный 3D-принтер ExOne S-Print с рабочей камерой 800х500х400 мм, печатает изделия с толщиной слоя от 240 мкм.

SLS-печать литейных форм

Основное отличие от указанной ранее SLS-технологии — использование в качестве материала для печати литейного песка, предварительно плакированного полимером. Материал спекается лазером, после чего очищается. Полученная форма помещается в прокалочную печь для отверждения, которое происходит при температуре 300-350 °С. Главное отличие от Binder Jet — более высокая детализация готовой литейной формы. Правда, для получения готовой формы требуется больше времени, из-за необходимости дополнительной обработки.

Солнечная 3D-печать

Кстати, есть ещё одна интересная технология печати песком — Solar Sinter. Разработал её немецкий инженер, дизайнер и художник Маркус Кайзер. Солнечная 3D-печать отлично подойдет для создания песчаных литейных форм, хоть и очень невысокой точности.

Стоит обратить внимание, что с собой необходимо взять офис. Маркус Кайзер предлагает пирамидальную палатку со светоотражающим покрытием — отличное укрытие от жаркого солнца.

Если ваше предприятие находится в пустыне, то это оптимальный вариант — кругом песок и солнечный свет, которые доступны в стандартную девятичасовую смену. Необходимо только привезти с собой сам принтер с компьютером. Принтер оборудован линзой Френеля, которая концентрирует солнечный свет в пучок, что дает возможность плавить песок с температурой 1400-1600°C; солнечным трекером, что отслеживает положение солнца и поворачивает линзу к нему; и фотоэлементами, для питания электроприводов установки. Главный плюс — экономия на электроэнергии, материалах и аренде помещения. Но еще важнее, пожалуй, концептуальность.

Процесс печати на солнечном 3D — принтере

Такой принтер, и в силу специфики применения, и из-за невысокой точности получаемых моделей, вряд ли можно использовать для промышленных нужд. Но для художников и ремесленников он станет настоящей находкой. Печатать на нем литьевые формы, пожалуй, занятие сомнительное, а вот арт-объекты — самое оно.

Извлечение модели из рабочей зоны солнечного 3D-принтера производится с помощью столовой ложки. Можно использовать вилку, но скорость будет ниже.

А если серьезно — кто знает, куда зайдут технологии дальше? Порой безумные проекты открывают новые возможности в нашей повседневной жизни.

Внедрение 3D-печати делает процесс литья дешевле и быстрее, позволяет изготавливать модели и формы для литья со сложной геометрией, разнообразными габаритами, не теряя в точности получаемой отливки.

Для получения выплавляемых и выжигаемых моделей рекомендуется использовать принтеры, работающие по технологиям FDM(FFF), SLS, SLA/DLP, Voxeljet. Используемые материалы обладают низким процентом зольности, а печатать модели быстрее, чем изготавливать вручную или с помощью станка с ЧПУ.

Пример технологической цепочки для получения отливки с применением выплавляемой модели

Для получения литейных форм подойдут технологии печати Binder Jetting и SLS с подходящим для форм материалом.

Аддитивные технологии в литье применимы в тех случаях, когда необходимо максимально дешево и быстро получить мастер-модель или форму для будущей отливки, например — в конструкторские бюро и на опытных производствах. Применимы они и в серийном производстве — если микронная точность не требуется, разница в скорости и стоимости работ делает их куда привлекательнее механообработки на фрезере с ЧПУ.

Уже сейчас можно заказать отливку из металла или пластмассы и посмотреть на результат применения 3D-печати в литье.

Выберите 3D-принтер для интеграции в литейное производство или оборудование для литейного цеха в Top 3D Shop.

Источник https://habr.com/ru/company/top3dshop/blog/427709/

Источник https://toolstver.ru/teh-info/formovochnaya-smes-dlya-litya-2.html

Источник https://top3dshop.ru/blog/3dprint-for-metal-casting.html

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Предыдущая статья Вклад МДМ Банка — «МДМ — Растущий вклад»
Следующая статья Бизнес-стратегия, что это: критерии выбора стратегии, тактические планы, их анализ и корректировка